

Optimizing the Design of Concentrated Solar Power Plants

Jeffrey Larson Sven Leyffer Michael Wagner

DOE Office of Energy Efficiency & Renewable Energy

March 2, 2017

Modeling CSP with thermal energy storage

Example variables:

```
y_t^{csb} = 1 if cycle is in standby mode at time t; 0 otherwise y_t^{rsup} = 1 if receiver is starting up at time t and was not in standby mode at time t-1; 0 otherwise
```

Example variables:

```
y_t^{csb} = 1 if cycle is in standby mode at time t; 0 otherwise y_t^{rsup} = 1 if receiver is starting up at time t and was not in standby mode at time t-1; 0 otherwise
```

- Example constraints:
 - Standby and start-up modes can't coincide
 - Total power produced by the receiver must account for both the available energy and any start-up energy consumption

Example variables:

```
y_t^{csb} = 1 if cycle is in standby mode at time t; 0 otherwise y_t^{rsup} = 1 if receiver is starting up at time t and was not in standby mode at time t-1; 0 otherwise
```

- Example constraints:
 - Standby and start-up modes can't coincide
 - Total power produced by the receiver must account for both the available energy and any start-up energy consumption
- Objective:
 - (electricity price)(power generated) (parasitic losses) (penalties)
 - Penalties: cycle start-up, receiver start-up, and change in electricity production between time steps

Modeling CSP with thermal energy storage

Design variables:

- Tower height
- Receiver diameter
- Receiver height
- Receiver DNI design point
- Solar multiple
- Cycle design point conversion efficiency
- Cycle design point power output
- TES capacity
- Mirror degradation replacement threshold
- Number of panels per heliostat (even integer)
- Number of full-time staff available for heliostat repairs (integer)
- Number of full-time staff available for mirror washing (integer)

► Evaluate the performance of a given CSP plant (with TES) using NREL's System Advisor Model (SAM)

► Evaluate the performance of a given CSP plant (with TES) using NREL's System Advisor Model (SAM)

Initial objective: optimize the revenue produced by SAM

 Evaluate the performance of a given CSP plant (with TES) using NREL's System Advisor Model (SAM)

Initial objective: optimize the revenue produced by SAM

We don't want to treat this as just a "black-box"

8 of 15

 Evaluate the performance of a given CSP plant (with TES) using NREL's System Advisor Model (SAM)

► Initial objective: optimize the revenue produced by SAM

We don't want to treat this as just a "black-box"

Much can be gained by exposing the problem structure to the optimization algorithm

For example, say one wants to solve:

minimize
$$f(x) = (f_1(x) - T_1)^2 + (f_2(x) - T_2)^2$$
,

For example, say one wants to solve:

minimize
$$f(x) = (f_1(x) - T_1)^2 + (f_2(x) - T_2)^2$$
,

Assume
$$f_i : \mathbb{R} \to \mathbb{R}$$
 and $\begin{bmatrix} T_1(x) \\ T_2(x) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

For example, say one wants to solve:

minimize
$$f(x) = (f_1(x) - T_1)^2 + (f_2(x) - T_2)^2$$
,

- ▶ Assume $f_i : \mathbb{R} \to \mathbb{R}$ and $\begin{bmatrix} T_1(x) \\ T_2(x) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
- ▶ If $\begin{bmatrix} f_1(a) \\ f_2(a) \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} f_1(b) \\ f_2(b) \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$,

For example, say one wants to solve:

minimize
$$f(x) = (f_1(x) - T_1)^2 + (f_2(x) - T_2)^2$$
,

- ▶ Assume $f_i : \mathbb{R} \to \mathbb{R}$ and $\begin{bmatrix} T_1(x) \\ T_2(x) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
- then f(a) = 2 and f(b) = 2.

For example, say one wants to solve:

minimize
$$f(x) = (f_1(x) - T_1)^2 + (f_2(x) - T_2)^2$$
,

where f_1 , f_2 are outputs from an expensive numerical simulation.

- ▶ Assume $f_i : \mathbb{R} \to \mathbb{R}$ and $\begin{bmatrix} T_1(x) \\ T_2(x) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
- ▶ If $\begin{bmatrix} f_1(a) \\ f_2(a) \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} f_1(b) \\ f_2(b) \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$,
- ▶ then f(a) = 2 and f(b) = 2.

Let the optimization method model f_i and combine the model information to construct descent directions. This should do no worse (and very often better) than just modeling f.

► Maximize Revenue: Minimize

$$-Sales + Costs$$

$$R = f_e(x)$$

- f_e: Explicit (known) costs
 - ► Tower cost, receiver cost, O&M costs

$$R = f_e(x) + f_d(s_d(x))$$

- f_e: Explicit (known) costs
 - ► Tower cost, receiver cost, O&M costs
- s_d: Design simulation
 - Call SolarPILOT to create a heliostat field

$$R = f_e(x) + f_d(s_d(x)) + f_h(s_h(x, s_d, \xi_h))$$

- f_e: Explicit (known) costs
 - ► Tower cost, receiver cost, O&M costs
- S_d : Design simulation
 - Call SolarPILOT to create a heliostat field
- *s_h*: Heliostat failure simulation
 - ▶ Simulate heliostat failure due to mechanical, electrical events

$$R = f_e(x) + f_d(s_d(x)) + f_h(s_h(x, s_d, \xi_h)) + f_o(s_o(x, s_d, \xi_o))$$

- f_e : Explicit (known) costs
 - Tower cost, receiver cost, O&M costs
- Sd: Design simulation
 - Call SolarPILOT to create a heliostat field
- *s_h*: Heliostat failure simulation
 - ▶ Simulate heliostat failure due to mechanical, electrical events
- S_o : Optical degradation simulation
 - Simulate mirror soiling and optical degradation

$$R = f_e(x) + f_d(s_d(x)) + f_h(s_h(x, s_d, \xi_h)) + f_o(s_o(x, s_d, \xi_o)) + f_p(s_p(x, s_h, s_o))$$

- f_e : Explicit (known) costs
 - Tower cost, receiver cost, O&M costs
- S_d: Design simulation
 - Call SolarPILOT to create a heliostat field
- *s_h*: Heliostat failure simulation
 - ▶ Simulate heliostat failure due to mechanical, electrical events
- S_o : Optical degradation simulation
 - Simulate mirror soiling and optical degradation
- s_n : Plant production
 - Average over a set of fixed scenarios

- Revenue isn't the best objective
 - ▶ \$1M plant making \$10M vs. \$1B plant making \$5B

- Revenue isn't the best objective
 - ▶ \$1M plant making \$10M vs. \$1B plant making \$5B
- ▶ True objective f_T is some iterative calculation of the outputs of f_e , f_d , f_h , f_o , and f_p .

- Revenue isn't the best objective
 - ▶ \$1M plant making \$10M vs. \$1B plant making \$5B
- ▶ True objective f_T is some iterative calculation of the outputs of f_e , f_d , f_h , f_o , and f_p .

- Revenue isn't the best objective
 - ▶ \$1M plant making \$10M vs. \$1B plant making \$5B
- ▶ True objective f_T is some iterative calculation of the outputs of f_e , f_d , f_h , f_o , and f_p .
- $ightharpoonup f_T(f_e, f_d, f_h, f_o, f_p)$
- ▶ Can get adjoint/derivative code for f_T (and all other f) via algorithmic differentiation.

- Revenue isn't the best objective
 - ▶ \$1M plant making \$10M vs. \$1B plant making \$5B
- ▶ True objective f_T is some iterative calculation of the outputs of f_e , f_d , f_h , f_o , and f_p .
- $ightharpoonup f_T(f_e, f_d, f_h, f_o, f_p)$
- ▶ Can get adjoint/derivative code for f_T (and all other f) via algorithmic differentiation.
- ▶ Then gradient at a point *x* just involves a chain rule calculation.

- Revenue isn't the best objective
 - ▶ \$1M plant making \$10M vs. \$1B plant making \$5B
- ▶ True objective f_T is some iterative calculation of the outputs of f_e , f_d , f_h , f_o , and f_p .
- $ightharpoonup f_T(f_e, f_d, f_h, f_o, f_p)$
- ▶ Can get adjoint/derivative code for f_T (and all other f) via algorithmic differentiation.
- ▶ Then gradient at a point *x* just involves a chain rule calculation.
- ▶ Model s_d via a model m_d and replace ∇s_d with ∇m_d .

Example model

Final comments

▶ Exposing structure should allow for improved optimization results.

Final comments

- ▶ Exposing structure should allow for improved optimization results.
- Best way to handle integer variables?

Final comments

- Exposing structure should allow for improved optimization results.
- Best way to handle integer variables?
- ▶ Optimizing revenue with a model-based method has already improved previous-best parameters.

